A new model for the global biogeochemical cycle of carbonyl sulfide – Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model

نویسندگان

  • T. Launois
  • S. Belviso
  • L. Bopp
  • C. G. Fichot
  • P. Peylin
چکیده

The global budget of tropospheric carbonyl sulfide (OCS) is believed to be at equilibrium because background air concentrations have remained roughly stable over at least the last decade. Since the uptake of OCS by leaves (associated with photosynthesis) and soils have been revised significantly upwards recently, an equilibrated budget can only be obtained with a compensatory source of OCS. It has been assumed that the missing source of OCS comes from the low-latitude ocean, following the incident solar flux. The present work uses parameterizations of major production and removal processes of organic compounds in the NEMOPISCES (Nucleus for European Modelling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies) ocean general circulation and biogeochemistry model to assess the marine source of OCS. In addition, the OCS photo-production rates computed with the NEMO-PISCES model were evaluated independently using the UV absorption coefficient of chromophoric dissolved organic matter (derived from satellite ocean color data) and apparent quantum yields available in the literature. Our simulations show global direct marine emissions of OCS in the range of 573– 3997 GgS yr, depending mostly on the quantification of the absorption rate of chromophoric dissolved organic matter. The high estimates of that range are unlikely, as they correspond to a formulation that most likely overestimate photoproduction process. Low and medium (813 GgS yr) estimates derived from the NEMO-PISCES model are however consistent spatially and temporally with the suggested missing source of Berry et al. (2013), allowing us thus to close the global budget of OCS given the recent estimates of leaf and soil OCS uptake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export

[1] The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2-fertilized biological production. Here we report a new potentially significant impact on the oxygen-minimum zones of the tropical oceans. ...

متن کامل

A new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models

Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO2) diffusion pathways through leaves have been revealed by experimental studies, with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (Lund–Potsdam–Jena, LPJ; National Center f...

متن کامل

Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition

A global ocean biogeochemical model is used to quantify the sensitivity of marine biogeochemistry and air–sea CO2 exchange to variations in dust deposition over decadal timescales. Estimates of dust deposition generated under four climate states provide a large range in total deposition with spatially realistic patterns; transient ocean model experiments are conducted by applying a step-functio...

متن کامل

Legacy impacts of all-time anthropogenic emissions on the global mercury cycle

[1] Elevated mercury (Hg) in marine and terrestrial ecosystems is a global health concern because of the formation of toxic methylmercury. Humans have emitted Hg to the atmosphere for millennia, and this Hg has deposited and accumulated into ecosystems globally. Here we present a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs to better underst...

متن کامل

A Mathematical Model for Indian Ocean Circulation in Spherical Coordinate

In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015